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Abstract 

This report discusses the findings from one phase of our ongoing work to evaluate materials 
for Army bearing systems. The objective of this phase is to determine the response and longevity 
of various silicon nitride (Si3N4) materials to rolling contact fatigue (RCF) using hybrid and 
all-ceramic systems. Tests were conducted under regular lubrication and lubrication-starved 
conditions for extended periods. A correlation between RCF life and the hardness, strength, and 
microstructure of each silicon nitride is made. The various silicon nitride materials evaluated 
in these RCF tests were selected on the basis of providing a varied response to the RCF 
parameters and conditions used. 
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1. Introduction 

The pursuit to improve tribological performance of bearings has taken us to examine the use 

of hybrid and all-ceramic systems. The effort to improve lifetimes of bearing components is 

propelled by (1) the requirement for drive-train components to survive higher loads, 

temperatures, and speeds, necessitated in advanced emerging Army systems, and (2) the need to 

reduce surface degradation of current system components from environmental effects. 

Current ceramic bearing materials being considered today fail in the same noncatastrophic 

mode as steel elements, which is an important consideration for their acceptability (Katz 1995). 

Other reasons why silicon nitride (Si3N4) is being considered for replacing steel elements are 

high hardness, low density, corrosion resistance, high operating temperatures, and high bend 

strength. Hardness is important for wear and abrasion resistance. Lower density allows for 

higher rotational speeds, and the other desired properties need no further elaboration (Katz 1993). 

Silicon nitride has been intensely studied for more than 20 yr as an alternative for many 

metallic structural applications at room and elevated temperatures. Many of these applications 

have centered on high-temperature materials for engines. Other applications have included 

cutting tools, electronic packaging, bearings, low-density structural materials, and wear 

components. 

Silicon nitride components are difficult to fabricate. Typically, parts are densified from 

silicon nitride starting powders; although, for a few applications (such as electronic), silicon 

nitride is applied by chemical vapor deposition. Because silicon nitride is a covalently bonded 

material and has a low self-diffusion coefficient, it takes a large amount of energy to promote 

densification through diffusion. This can only be accomplished at extremely high temperatures 

and pressures. Because of this difficulty, densification aids are added to promote sintering at low 

temperatures. These densification aids react with the silica inherently present on the surface of 

each silicon nitride particle to form a liquid phase. This liquid phase allows some densification 

through particle rearrangement. More significantly, it allows for the silicon nitride to be sintered 



through a solution reprecipitation mechanism. Because of the presence of these densification 

aids, it is best to think of silicon nitride as an alloy, since the choice of densification aids greatly 

affects the final properties of the material. In most cases, the densification aids react with the 

silica to form a second phase that can be either crystalline or amorphous and is usually located at 

the grain boundaries. SiAlONs are a special case where alumina is added along with other 

densification aids. The alumina goes into solid solution with the silicon nitride, with the 

aluminum and oxygen substituting for the silicon and nitrogen, respectively. 

Because of the many different denisifcation aids that can be used, different silicon nitride 

alloys can be developed to maximize materials property for specific applications. Densification 

aids can be chosen to allow sintering of silicon nitride at temperatures below its decomposition 

temperature without the aid of pressure. The selections of densification aids determines the 

processing technique (i.e., gas-pressure sintered [S], hot isostatically pressed [HDPed], or hot 

pressed), which, in turn, determines the microstructural features. HIPed silicon nitrides tend to 

have finer grain sizes and higher strengths, whereas, in sintered materials, a duplex 

microstructure can be developed, which can lead to a higher toughness. 

2. Materials and Experimental Procedure 

2.1 Materials. Various silicon nitride materials (Table 1) were selected for evaluation in 

rolling contact fatigue (RCF) tests using hybrid and all-ceramic systems. The materials were 

selected on the basis of providing a varied response to the RCF parameters and conditions used, 

not solely for a comparison of bearing quality. Most, if not all, of the materials have since been 

replaced by their manufacturers with upgraded or modified versions. One material, Allied-Signal 

GN10 was not developed for bearing material applications but rather as a high-temperature 

structural ceramic. 

2.2 RCF. All RCF testing for the present effort was performed on a ball/rod rig as seen in 

Figure 1 (developed by Federal-Mogul and now produced by NTN) under the conditions listed in 

Table 2. 



Table 1. Materials Information 

Supplier 
Densification 

Method Additive Density 
(g/cm3) 

Knoop Hardness 
at 1,000 g 

(GPa) 

Phase 
Content 

Norton Advanced 
Ceramics (Cerbec) 

HIP MgO 3.23 15.65 25% a 
75% ß 

ESK-EK9980 HIP HEP MgO 3.17 14.51 ß phase 
ESK-EK9980 S S LaaCyAlaOj 3.26 13.77 ß phase 
Allied-Signal GN10 HIP Y203/SrO 3.31 — >95% ß 

■   - 
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Figure 1. RCF Test Rig. 

The RCF operates under the basic principle (as illustrated in Figure 2) and consists of a 

rotating cylindrical test specimen alternately stressed by rolling contact with three radially loaded 

balls. The three balls, separated by a retainer, are radially loaded against the test specimen by 

two tapered bearing cups thrust-loaded by three compression springs (Glover 1982). 

Replacing the balls, as necessary, during RCF testing with hybrid systems provides further 

information on whether or not spalling or wear might be life limiting for a silicon nitride bearing 

material. 



Table 2. Conditions for RCF Testing 

Hertzian Stress 

Rotational Speed 
Lubrication Supply 
Lubrication Type 
Specimen Length 
Specimen Diameter 
Surface Finish 
Temperature 

6.07 GPa (865 ksi) for condition la 

6.40 GPa (911 ksi) for condition 2b 

3,600 rpm 
8-10 drops/min 
MIL-PBF-23699C 

76.2 mm +0.025/-0.000 in 
9.52 mm +0.0000/-0.00005 in 
0.05 to 0.10 pmAA 
20-25° C 

1 Ceramic rod with steel balls. 

' Ceramic rod with ceramic balls. 
: U.S. Department of Defense (1997). 

Figure 2. Schematic of Tester. 

All four stations of the RCF tester were operated simultaneously to speed up acquisition of 

the RCF data. At least three wear tracks and associated fatigue spalls were obtained for each 

specimen condition, and the specimens were alternated among the test stations to minimize any 



systematic experimental error. During the ceramic-on-steel tests, the balls were 52,100 steel 

balls and the rods were the silicon nitride materials. In the ceramic-on-ceramic tests, the ceramic 

balls were NBD 100 grade 5 silicon nitride, while the rods were the silicon nitride materials 

indicated in the specific tests. On the all-ceramic system test, lubrication (MBL-PRF-23699 [U.S. 

Department of Defense 1997]) was provided for the first 24 hr and then discontinued for the 

remainder of the test. 

2.3 Characterization. The room-temperature tensile strength of each material was 

determined by diametrally compressing a right circular cylinder between two flat platens. Tests 

were conducted in air using a crosshead speed of 0.5 mm/min. A single piece of a manila file 

folder was placed between the platen and the specimen at each loading point to provide 

appropriate stress distribution. The specimens had a diameter-to-thickness ratio of 4 to 1, with a 

nominal diameter of 9.5 mm and a thickness of 2.4 mm. The diameter was the same as that of 

the RCF specimens. All specimens were machined from a single RCF rod of each silicon nitride. 

No additional machining was done to the circumference of any cylinders, but both flat surfaces 

were machined to a 20.3-jjm RMS finish or better. The tensile strength was calculated using 

equation (1): 

oT = 2P/7tdt, (1) 

where 

oT = tensile strength (MPa), 

P   = applied load (N), 

d   = specimen diameter (mm), and 

t    = specimen thickness (mm). 



Hardness was determined using a Knoop diamond indenter with a 1,000-g load. 

Samples were prepared for microstructural characterization by sectioning RCF rods with a 

diamond saw and mounting the sections in acrylic. The samples were then rough-ground with 

silicon carbide abrasives and ground for 12 hr with 9-um diamond media on lead platens using 

kerosene as a lubricant. The samples were given a final polish using 0.05-um silica with a nylon 

cloth on a vibratory polisher. 

Optical microscopy was conducted to examine the distribution of the phases and the 

homogeneity of the material. Samples were etched with a boiling 40% HF solution for 10 min 

and then coated with 4 nm of a gold/palladium alloy. Scanning electron microscopy (SEM) was 

also used to examine the microstructure and fracture surfaces as seen in Figures 3 and 4. X-ray 

diffraction (XRD) was performed for phase analysis. 

3. Results 

3.1 Ceramic vs. Steel. In the hybrid tests (i.e., silicon nitride rods and steel balls), the steel 

balls failed before the ceramics. When the steel balls failed, they were replaced and the test was 

continued until the ceramic rods failed. 

As can be seen in Table 3, of the four ceramics that were run to failure, the ESK sintered 

material had a substantially longer fatigue life than the other materials tested. ESK HIPed had 

the second longest lifetime. Both of these materials greatly exceeded the lifetimes of the Cerbec 

and GN10 materials. 

3.2 Ceramic vs. Ceramic. Tests were done on Cerbec and GN10 specimens, where, after 

24 hr, the lubrication feed was stopped with the idea of accelerating the test in a more severe 

condition. It was observed that the lubrication-starved condition had a higher temperature than 

the lubricated condition. Retained lubrication was observed when testing was concluded, which 

prevented the steel raceway from seizing during the tests. 
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(a) ESK Sintered at 5,000x. (b)ESKHIPedat5,000x. 

(c) Cerbec at 9,000x. (d)GN10at5,000x. 

Figure 3. Micrographs of Si3N4 Specimens Using SEM. 

The Cerbec material had a runout at 586.6 and 1,179.1 hr, while the GN10 specimens produced 

failures at 31.1 and 87.9 hr and a runout at 473.4 hr. Typical spallation occurred in all the materials 

except for GN10. Spallation is when material chips/spalls off the specimen in a fashion similar to 

metallic bearing materials. While failure was not the result of chipping or spallation for GN10, a 

smooth elliptical depression, which acted like a spall, was formed in the wear track, thereby 



(a) ESK Sintered at 2,000x. (b)ESKfflPedat2,000x. 
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(c) Cerbec at 2,000x. (d)GN10at2,000x. 

Figure 4.   Fractography Micrographs of Diametral Compression Specimens Using SEM. 

terminating the test. It was confirmed by the preliminary profilometry data that the surface was 

smooth at the point of failure, whereas traditional failures have a very rough surface profile. This 

indicates that GN10 is not a bearing-grade material. 

3.3 Diametral Compression. The results of the diametral compression testing can be seen 

in Table 4. 



Table 3. Lifetime Data - Tests Conducted With Ceramic Rod on Steel Balls 

Ceramics (SigN^: With 52,100 Balls B10(xl06) B50(xl06) Slope 

ESK-EK9980S(with4pts.) 264.21 404.49 4.42 
ESK-EK9980 HIP (with 6 pts.) 108.71 366.86 1.55 
Cerbec (with 9 pts.) 14.47 63.02 1.28 
Allied-Signal GN10 (with 9 pts.) 6.56 30.38 1.23 
M50 Steel Baseline (Middleton et al. 1992) 2.74 7.91 2.93 

Table 4. Diametral Compression Test Data 

Material Meanox 
(MPa) 

No. of Specimens Tested Standard Deviation 

Allied-Steel GN10 772 11 55 
ESK-EK9980 S 709 12 91 
ESK-EK9980 HIP 708 12 92 
Cerbec 589 12 134 

4. Discussion 

4.1 RCF Test The results of the RCF test are shown in Tables 3 and 5. It can be seen by 

comparing Tables 1 and 3 that there is a trend between having low hardness and longer RCF 

lifetime for the three materials designed specifically as bearing materials. Lower hardness 

materials distribute the load over a greater area and reduce the stress on the material. 

Comparison of hybrid tests and all-ceramic tests showed a significant improvement over steel 

systems (Middleton et al. 1991). In the all-ceramic systems tested here under lubrication-starved 

conditions, the ceramic-on-ceramic systems showed that they could continue to perform when 

lubrication was discontinued. The runouts of these tests were discontinued because the length of 

time of the test did not justify the continuation of the test until the ceramic rod failed. Runout 

refers to the ability of the material to not fail in a reasonable time. 



Table 5. Lifetime Data - Tests Conducted With Ceramic Rod on Ceramic Balls 

Ceramics (Si3N4): With Ceramic (Si3N4) Balls B10(xl06) B50(xl06) Slope 

GN10 (With 14 pts.) With NBD 100 Balls 0.95 82.03 0.42 

Cerbec With NBD 100 Balls 
no data, all 

runouts8 — — 

Runout tests that are discontinued before failure of the ceramic rod occurred. 

4.2 Diametral Compression Test The diametral compression test was used to determine 

the tensile strength of these materials because of the similarity in the specimen geometry between 

this technique and the RCF test. This technique has been previously used to determine the 

tensile strength of ceramics, having been first used to test concrete in the early 1950s (Carneiro 

and Barcellos 1953) and since then for advanced monolithic ceramics (e.g., Si3N4 and A1203) 

(Rudnick, Hunter, and Holden 1963; Marion and Johnstone 1977; Ovri and Davies 1987; 1988). 

Failure of ceramic bearings typically occurs due to spallation that results from the development, 

growth, and coalescence of microcracks at or very near the surface. Table 4 summarizes the 

tensile strength of each material. There does not appear to be a correlation between strength and 

RCF lifetime. GN10 had the highest strength and the lowest standard deviation, yet had the 

shortest RCF lifetime. This is not surprising since GN10 was developed for structural and not 

bearing applications. There was essentially no difference in strengths between the two ESK 

materials and yet the sintered material had a substantially greater lifetime in RCF. 

4.3 Microscopy. 

4.3.1 Optical Microscopy. Optical microscopy showed that the two ESK silicon nitrides had 

a more uniform distribution of a second phase and a more homogeneous microstructure than 

either the Cerbec or GN10 materials. In the Cerbec and GN10 materials, there were large 

pockets of second phase, while, in both ESK materials, the second phase was uniformly 

distributed. There also appeared to be preferential polishing of the second phase in the ESK 

materials, indicating that this second phase was not as hard as the silicon nitride. 

10 



4.3.2 Electron Microscopy. The scanning electron micrographs taken of the polished and 

etched samples (Figure 3) show the microstructure and distribution of grain boundary phase. The 

ESK materials are marked by having larger acicular grains (with a high length-to-diameter [L/D] 

ratio) surrounded by smaller equiaxed grains. The grain boundary phase is distributed evenly 

along the grains. There are no large pockets of it. This is in contrast to the GN10 material, 

where there are large pockets of the grain boundary phase. This microstructure is marked by 

having a more uniform grain size, and the large grains that are forming do not have as large an 

IVD ratio as the ESK materials. The Cerbec material has a fine equiaxed grain size. This is to be 

expected, given that it was processed at temperatures low enough to keep some of the 

alpha-phase silicon nitride from reacting to form the beta-phase silicon nitride. The fine grain 

size and alpha phase are what give the Cerbec silicon nitride its high hardness. Pockets of grain 

boundary phase can be seen to be nonuniformly distributed within this material. 

The two ESK materials had similar microstructures that appear to be advantageous in RCF. 

Although fracture toughness was not measured here, it is believed that the microstructures of the 

ESK materials would give higher fracture toughness than the GN10 or Cerbec material. This 

could result in longer RCF lifetimes. Clearly, the grain boundary phase in the ESK materials was 

more evenly distributed. Under high Hertzian loads, these large pockets of grain boundary phase 

could act as flaws. When the grain boundary phase is more evenly distributed, the loads are 

carried by the stronger silicon nitride phase. Although this explains why the two ESK materials 

performed better than the Cerbec and GN10 materials, it does not explain the significant 

differences between the ESK sintered and ESK HIPed. The ESK HOPed had a density of 

3.17 g/cm3, which is lower than the theoretical density of silicon nitride, which is 3.22 g/ cm3. 

Residual porosity was not removed during the HIPing process, which could explain the 

difference between the ESK materials. The scanning electron micrographs of the fracture surface 

clearly show that the ESK HIPed material has more porosity than the sintered material. More 

work is needed to positively determine the amount of porosity in the ESK HIPed material. The 

longer lifetimes of the ESK materials appear to be due, in part, to the presence of a softer, more 

uniformly distributed second phase, which allows for greater stress distribution of the Hertzian 

stresses. The lower porosity of the ESK sintered compared to the ESK HIPed may account for 

11 



the different lifetimes of these similar silicon nitrides. In fact, all the HIPed materials seem to 

have a higher degree of porosity than the sintered material. 

The all-ceramic systems exhibited greater RCF endurance than the hybrid systems, and 

extraordinary RCF life was observed for lubrication-starved all-ceramic systems. The Cerbec 

material performed better than the GN10 material in the all-ceramic system. Not surprisingly, 

the Cerbec material also performed better than the GN10 in the hybrid bearing systems. 

For the hybrid bearing systems the ESK sintered material was substantially better than any of 

the other materials tested. 

More work is needed to determine whether a large-grained duplex microstructure, 

fine-grained duplex microstructure, or intermediate-grained microstructure is best. Work is 

under way at this time to determine which is the best microstructure and to determine the 

influence of fracture toughness. 

As expected, the nature and distribution of the grain boundary phase have an important effect 

on the RCF lifetimes. More work to understand the nature of the grain boundary phase is also 

under way. Transmission electron microscopy (TEM) is being carried out to determine the 

chemistry and crystallinity of the grain boundary phase. Use of a nanoindentor to determine the 

hardness of the grain boundary phase is being explored. It was noted that the grain boundary 

phase of the ESK sintered was much more resistant to the hydrofluoride (HF) etch than the ESK 

HIPed, which, given the same etch conditions, was overetched as compared to the sintered 

material. This made it hard to evaluate the porosity of the ESK HIPed material and compare it to 

the other materials. Additional work is needed to determine the porosity of the different 

materials tested. 

Materials to be used for bearing should have the minimum amount of porosity possible. 

Even a small amount of fine porosity greatly affects the RCF lifetimes. 

12 



Sintering may be a better way to density bearing materials than HIPing. During the HIP 

cycle, residual porosity is squeezed until the pressure in the pore equals the HEP pressure; then, 

there is no more pore removal. Sintering is usually a slower process and uses a greater amount of 

liquid phase. This can result in more complete pore removal. This work is part of an ongoing 

effort to evaluate bearing materials and to understand the attributes that make them good so that 

better bearing materials can be designed. Future work will include evaluation of different silicon 

nitrides, as well as other materials. 

5. Conclusion 

A duplex microstructure consisting of large acicular grains with a high L/D ratio surrounded 

by smaller grains gives the best RCF lifetime. 

A homogeneous fine distribution of the grain boundary phase with no large pockets of grain 

boundary phase gives the best RCF performance. 

Low hardness materials seem to perform better than high hardness materials. 

Small amounts of porosity degrade RCF performance without affecting strength and 

hardness. 

13 
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